Skip to content

Baseline Results Summary

This page summarizes the baseline results for all tasks in the podcast benchmark.

Overview

Baseline results for all of our tasks using a simple deep network, trained only on our data.

Note: For detailed metrics across all lags, see the lag_performance.csv file in each task's results directory linked below.

Content/Non-Content Classification

Config: configs/neural_conv_decoder/neural_conv_decoder_content_noncontent.yml

Detailed Results: baseline-results/content_noncontent_task_sig_elecs_mlp_early_stop_roc_2025-12-19-00-34-17/lag_performance.csv

Content/Non-Content Classification

Best Performance:

  • Lag: 200ms
  • ROC-AUC: 0.5900

Word Embedding Decoding

Performance Across Lags

Word Embedding Decoding AUC ROC

Best Performance by Model

Arbitrary

Config: configs/neural_conv_decoder/neural_conv_decoder_arbitrary.yml

Detailed Results: baseline-results/ensemble_model_10_arbitrary_2025-12-19-00-17-32/lag_performance.csv

Best Performance:

  • Lag: 400ms
  • AUC-ROC: 0.5549

GloVe

Config: configs/neural_conv_decoder/neural_conv_decoder_glove.yml

Detailed Results: baseline-results/ensemble_model_10_glove_2025-12-19-00-17-41/lag_performance.csv

Best Performance:

  • Lag: 400ms
  • AUC-ROC: 0.6046

GPT-2

Config: configs/neural_conv_decoder/neural_conv_decoder_gpt2.yml

Detailed Results: baseline-results/ensemble_model_10_gpt2_2025-12-19-00-17-43/lag_performance.csv

Best Performance:

  • Lag: 400ms
  • AUC-ROC: 0.6057

GPT Surprisal (Regression)

Config: configs/neural_conv_decoder/neural_conv_decoder_gpt_surprise.yml

Detailed Results: baseline-results/gpt_surprise_2025-12-19-00-18-44/lag_performance.csv

GPT Surprisal (Regression)

Best Performance:

  • Lag: 400ms
  • Correlation: 0.0591

GPT Surprisal (Multiclass)

Config: configs/neural_conv_decoder/neural_conv_decoder_gpt_surprise_multiclass.yml

Detailed Results: baseline-results/gpt_surprise_2025-12-19-00-18-43/lag_performance.csv

GPT Surprisal (Multiclass)

Best Performance:

  • Lag: 200ms
  • ROC-AUC (Multiclass): 0.5333

Part of Speech

Config: configs/neural_conv_decoder/neural_conv_decoder_pos.yml

Detailed Results: baseline-results/pos_task_sig_elecs_without_other_classes_2025-12-19-00-34-17/lag_performance.csv

Part of Speech

Best Performance:

  • Lag: 600ms
  • ROC-AUC (Multiclass): 0.5305

Sentence Onset Detection

Config: configs/neural_conv_decoder/neural_conv_decoder_sentence_onset.yml

Detailed Results: baseline-results/sentence_onset_lr_2025-12-19-00-18-44/lag_performance.csv

Sentence Onset Detection

Best Performance:

  • Lag: 0ms
  • ROC-AUC: 0.8800

Volume Level Prediction

Config: configs/time_pooling_model/simple_model.yml

Detailed Results: baseline-results/volume_level_simple_2025-12-19-00-34-56/lag_performance.csv

Volume Level Prediction

Best Performance:

  • Lag: 200ms
  • Correlation: 0.4479

LLM Token Decoding

This section compares two approaches to LLM-based decoding from brain activity: one using brain data (LLM Token Finetuning) and a control without brain data (LLM Decoding).

LLM Decoding Comparison

LLM Token Finetuning (Brain Data)

Config: configs/neural_conv_decoder/llm_two_stage_multi.yml

Detailed Results: baseline-results/llm_token_finetune_2025-12-26-12-44-36/lag_performance.csv

Best Performance:

  • Lag: 200ms
  • Perplexity: 60.40

LLM Decoding (No Brain Data - Control)

Config: configs/controls/llm_decoding_no_brain_data.yml

Detailed Results: baseline-results/llm_decoding_control_2025-12-28-15-55-38/lag_performance.csv

Best Performance:

  • Lag: -200ms
  • Perplexity: 67.22